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Machine learning-guided acyl-ACP reductase
engineering for improved in vivo fatty alcohol
production
Jonathan C. Greenhalgh1,2, Sarah A. Fahlberg1, Brian F. Pfleger 2✉ & Philip A. Romero 1,2✉

Alcohol-forming fatty acyl reductases (FARs) catalyze the reduction of thioesters to alcohols

and are key enzymes for microbial production of fatty alcohols. Many metabolic engineering

strategies utilize FARs to produce fatty alcohols from intracellular acyl-CoA and acyl-ACP

pools; however, enzyme activity, especially on acyl-ACPs, remains a significant bottleneck to

high-flux production. Here, we engineer FARs with enhanced activity on acyl-ACP substrates

by implementing a machine learning (ML)-driven approach to iteratively search the protein

fitness landscape. Over the course of ten design-test-learn rounds, we engineer enzymes that

produce over twofold more fatty alcohols than the starting natural sequences. We char-

acterize the top sequence and show that it has an enhanced catalytic rate on palmitoyl-ACP.

Finally, we analyze the sequence-function data to identify features, like the net charge near

the substrate-binding site, that correlate with in vivo activity. This work demonstrates the

power of ML to navigate the fitness landscape of traditionally difficult-to-engineer proteins.
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Fatty acyl reductases (FARs) are vital for the microbial
synthesis of key primary and secondary metabolites such as
fatty aldehydes, waxes, alkanes, and fatty alcohols. These

enzymes often interface with fatty acid anabolic/catabolic path-
ways and catalyze the reduction of thioester bonds found in acyl-
acyl carrier proteins1 (acyl-ACPs) and acyl-coenzyme A’s
(acyl-CoAs)2. These enzymes typically have a preference for
either acyl-ACP or acyl-CoA substrates, but also display cross
reactivity due to the common thioester bond in both substrates.
Some FARs perform only one, two-electron, reduction step to
produce aldehydes3, while others can perform two sequential
reduction steps (totaling four electrons) to produce alcohols
directly4–6.

The alcohol-forming FAR enzymes capable of complete
reduction of thioesters to alcohols have been widely used in
metabolic engineering for producing fatty alcohols7–11. The
enzymes Maqu 2220 and MA-ACR from Marinobacter aquaeloei
display high activity on acyl-CoA substrates and produce the
corresponding fatty alcohols2,4,11. These enzymes can be incor-
porated to feed off of the reverse beta oxidation pathway to yield
high levels of alcohols8. Another common metabolic engineering
strategy involves terminating the host organism’s fatty acid
elongation cycle with a thioesterase to produce a fatty acid that
can then be converted to an acyl-CoA by an ATP-dependent
ligase, and then finally converted to an alcohol by a FAR7,9,12.
This approach was recently applied using an engineered C8-
specific thioesterase to produce octanol at a titer of 1.3 g/L9.
While these titers are impressive, alcohol production could be
more efficient with enzymes that bypass the thioesterase-ligase
route, and instead directly convert acyl-ACPs to alcohols13.

Alcohol-forming FARs that prefer acyl-ACP substrates are less
well characterized, and often display low to moderate activity
relative to enzymes that prefer acyl-CoA substrates. Engineering
alcohol-forming FARs such as MA-ACR to have higher activity
on acyl-ACP substrates would open up new highly efficient
pathways to making fatty alcohols in vivo. However, these
enzymes are challenging to engineer using traditional protein
engineering methods. MA-ACR and its close homologs lack high-
resolution crystal structures needed for most computational and
rational engineering approaches. Directed evolution strategies are
also difficult because fatty alcohol production cannot be assayed
in high-throughput. Machine learning (ML)-based protein engi-
neering has recently emerged as an efficient strategy for engi-
neering proteins with limited structural and functional
information14–20. Machine learning algorithms can infer the
protein sequence-function mapping given a limited experimental
sampling of the landscape14. The resulting sequence-function
models can be used to computationally explore sequence space
and predict optimized sequences.

In this work, we apply an ML-based protein engineering fra-
mework to engineer acyl-ACP reductases to produce fatty alco-
hols in vivo. We start by characterizing the ability of MA-ACR
and related enzymes to produce fatty alcohols from intracellular
acyl-ACP pools. We then design a large library of chimeric
enzymes and develop an ML-based protein optimization strategy
to rapidly identify highly active sequences. Our approach consists
of generating diverse initial sequence sampling to get a pre-
liminary view of the landscape, followed by ten iterative design-
test-learn cycles to efficiently search the landscape and discover
optimized sequences. We show that the algorithm converges on
highly active acyl-ACP reductases that produce 4.9-fold more
fatty alcohols than MA-ACR. We evaluate the performance of the
engineered enzymes in vitro and find the improved alcohol titers
are the result of engineered enzymes with increased catalytic
efficiency. Finally, we perform a statistical analysis of the land-
scape and identify key sequence elements that contribute to

enzyme activity. Many of these elements are located near the
enzyme’s putative substrate entry channel and may be involved
with modulating the preference between acyl-CoA and acyl-ACP
substrates. These results open future directions to engineer
enzymes for efficient microbial production of fatty alcohols.

Results
In vivo fatty alcohol production by natural and chimeric acyl-
ACP reductases. We focused our protein engineering efforts on
MA-ACR from Marinobacter aquaeloei because it displays high
in vivo activity on acyl-CoA substrates7–9, and it was also sus-
pected to accept acyl-ACP substrates. MA-ACR consists of two
domains that sequentially reduce thioesters to alcohols (Fig. 1a).
The C-terminal acyl-thioester reductase (ATR) domain reduces
thioesters from ACP or CoA substrates to aldehydes, and the
N-terminal aldehyde reductase domain (AHR) reduces aldehydes
to alcohols4. We also identified two related enzymes from Mar-
inobacter BSs20148 and Methylibium Sp. T29 that have 60–81%
sequence identity with MA-ACR (Fig. 1b) and were previously
shown to produce alcohols from acyl-CoAs8,9. Throughout the
remainder of this paper, we refer to the FAR enzymes from
Marinobacter aquaeloei, Marinobacter BSs20148, and Methyli-
bium Sp. T29 as MA-ACR, MB-ACR, and MT-ACR, respectively.

We characterized the ability of these three natural enzymes to
produce fatty alcohols from intracellular acyl-ACP pools by
introducing them into E. coli RL08ara21, a strain that lacks the
fadD gene, which encodes an acyl-CoA ligase. Deletion of fadD
decreases the formation of acyl-CoAs and thus presents the
enzymes with substrates that are predominantly acyl-ACPs from
fatty acid biosynthesis10,13. We grew each strain under aerobic
conditions, extracted the fatty alcohols and measured the fatty
alcohol (C6-C16) titers using gas chromatography. We found the
enzyme MB-ACR from Marinobacter BSs20148 displayed more
than double the total fatty alcohol titer of MA-ACR (Fig. 1c).
These results suggest that MB-ACR may have a preference for
acyl-ACP substrates because it was previously shown to have
lower activity than MA-ACR on acyl-CoA substrates8.

We next characterized the fatty alcohol production from
chimeric enzymes generated by swapping AHR and ATR
domains between the three natural sequences. Of the six possible
chimeric enzymes, we found the chimera with an AHR domain
from MA-ACR and the ATR domain from MB-ACR displayed
the highest fatty alcohol titers (Fig. 1c). This chimeric enzyme
produced ~50% more fatty alcohol than MB-ACR and roughly
three-fold more fatty alcohol than MA-ACR. The ATR domain
from MT-ACR also displayed increased activity (~1.5x) when
fused to the AHR domain from MA-ACR. These results suggest
that MA-ACR’s AHR domain is more efficient than the AHR
domains from the two other natural enzymes.

To further explore how gene shuffling can enhance fatty
alcohol production, we designed a large library of ATR domains
using SCHEMA22–24 structure-guided recombination (Fig. 1d).
Our design used a homology model of MA-ACR’s ATR domain
to define the family’s contact map and identified seven break-
points within the domain that balance structural disruption with
library diversity (Supplementary Fig. 1). These seven breakpoints
define eight sequence blocks that span the ATR domain’s
structure (Fig. 1e). Notably, the structure’s substrate access
channel is composed of blocks 4, 5, 6, 7, and 8, and diversity at
these positions may result in changes in the enzyme’s substrate
preference. Each of the eight sequence blocks can be inherited
from one of the three natural enzymes to define a combinatorial
sequence space of 38 sequences. However, block 6 from MA-ACR
and MB-ACR happened to be perfectly conserved, and therefore
the total library diversity is 2*37= 4374 sequences. We fused our
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Fig. 1 Acyl-ACP reductase activity of natural and chimeric enzymes. a Alcohol-forming acyl-ACP reductases consist of two domains that sequentially
reduce acyl-ACP substrates to aldehydes, and then aldehydes to alcohols. b We focused our studies on three diverse sequences from M. aquaeloei (dark
blue), Marinobacter BSs20148 (light blue), and Methylibium Sp. T29 (yellow), which we refer to as A, B, and T, respectively. c Total fatty alcohol production
by the three natural sequences and the six chimeric enzymes generated by shuffling their AHR and ATR domains. The error bars represent one standard
deviation centered at the mean of four replicates (n= 4) from cultures derived from individual colonies, except for MA-ACR (where n= 5), parent B
(fusion A-B, where n= 3) and the empty vector (n= 2). d ATR domain residue-residue contact map used for SCHEMA recombination. The colored
squares depict the eight sequence blocks from the SCHEMA design that minimize structural disruption. e The SCHEMA blocks mapped onto the ATR
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ACR. Source data underlying Fig. 1c are provided as a Source Data file.
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chimeric ATR domains with the highly active AHR domain from
MA-ACR (Fig. 1f).

For the remainder of the paper, we refer to chimeras by a block
sequence (e.g., A-ABTABTAB) that specifies which of the three
enzymes each sequence fragment was inherited from. Here, A, B,
and T correspond to MA-ACR, MB-ACR, and MT-ACR,
respectively; the first position specifies the AHR domain and
the remaining positions specify the ATR domain’s eight
SCHEMA blocks. We also refer to the three sequences that have
all eight ATR blocks from a single natural enzyme as “parental”
enzymes. Here “parent A” has the block sequence A-
AAAAAAAA, “parent B” is A-BBBBBBBB, and “parent T” is
A-TTTTTTTT.

Increasing fatty alcohol production with ML-driven enzyme
engineering. We aimed to identify the most highly active
enzymes from our chimeric ATR domain library. However, the
chimera space consists of thousands of unique sequences and is
much too large to fully characterize using our low-throughput gas
chromatography assay. Instead, we developed an ML-based
sequence optimization method to rapidly identify highly active
sequences with minimal experimentation (Fig. 2a). Our approach
consists of generating diverse initial sequence sampling to get a
preliminary view of the landscape, followed by iterative design-

test-learn cycles to efficiently search the landscape and discover
optimized sequences.

We generated a diverse initial sampling of sequence space
using a greedy algorithm to identify the set of 20 sequences that
maximized the Gaussian mutual information with the full
chimera space consisting of 4374 sequences. We then con-
structed these sequences and experimentally measured their fatty
alcohol titers in three E. coli strains (Supplementary Fig. 2). We
evaluated the chimeras’ titers in RL08ara under aerobic
conditions to assess activity on acyl-ACP substrates. Seventeen
of the twenty sequences displayed no measurable alcohol
production in RL08ara and the remaining three produced low
titers that were below the least productive parent (T). We also
tested their activity in the CM24 strain8 that was engineered to
produce high concentrations of acyl-CoA substrates. In the
CM24 strain under anaerobic conditions, we found two of the
twenty chimeras produced alcohol titers comparable to least
productive parent (B). Finally, we also evaluated alcohol titers in
BL21(DE3) under aerobic conditions and found eight of the
twenty chimeras produced measurable alcohols. Notably, the
panel of twenty chimeras displayed differential activity across
strains, which could be the result of varying substrate pools
within each strain and different substrate preferences between
the chimeric enzymes.
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The fatty alcohol titer data from these 20 initial sequences was
used to train Gaussian process (GP) sequence-function models
that can make predictions across the entire chimera space.
Importantly, GPs also provide estimates of the model’s
uncertainty (confidence intervals) that can be used to gauge the
reliability of predictions and highlight gaps in its understanding
of the landscape14,15.

With the initialized GP sequence-function model, we then
iterated through multiple design-test-learn cycles with the goal of
identifying the optimal sequence with minimal experimental
samples. The sequences for the next round of experimentation
were designed using an upper-confidence bound (UCB) criterion
that simultaneously explores uncertain regions of the landscape
and samples sequences that are predicted to be optimized. UCB
optimization provides strong theoretical guarantees for efficiently
balancing exploration and exploitation25,26, and should rapidly
converge on the optimal sequences. During each iteration, we
designed 10–12 sequences using a batch mode UCB criterion (see
“Methods”), assembled the corresponding genes, transformed
them into E. coli, and measured each strain’s fatty alcohol titer
using gas chromatography. The new data was then used to update
the sequence-function model and the process was repeated. We
performed a total of ten rounds of UCB sequence optimization
and saw gradual improvements in fatty alcohol titers (Fig. 2). The
details of each round of UCB optimization can be found in
Supplementary Table 4.

The UCB sequence optimization converged on multiple highly
active acyl-ACP reductases. The enzyme with the highest titer had
a block sequence of A-ATBBAAAB and we refer to this top
sequence as ATR-83. Additional in vivo characterization showed
that ATR-83 produces a total titer of 54 ± 11mg/L fatty alcohols
(Supplementary Table 5), which is nearly fivefold greater than the
titer of MA-ACR and about twofold greater than the best natural
sequence (MB-ACR). The alcohols produced by ATR-83 and the
other top chimeras consisted of primarily hexadecanol (C16) and
some tetradecanol (C14). This product distribution is expected
since long chain acyl-ACPs are the primary precursors for the
lipids that make up the cell membranes in E. coli27,28.

Improved fatty alcohol production occurs via an enhanced
catalytic rate on acyl-ACP substrates. Our engineered acyl-ACP
reductase chimeras produce several fold more fatty alcohols than
the initial natural sequences. Increased flux through the metabolic
pathway can be the result of improved protein stability and/or
expression, enzyme kinetic properties, or possibly interactions
with other components of the pathway. We performed further
biochemical analysis of the engineered enzymes to better
understand how they increase alcohol production.

We first measured the level of enzyme expression in the
production strain (Supplementary Fig. 3, Fig. 3a). We found all
sequences were expressed at high levels and there were no
statistically significant differences between the natural and
engineered sequences. Next, we purified the enzymes and
measured their kinetic properties on palmitoyl-ACP (Fig. 3b, c).
ATR-83 and parent B displayed similar KM values for palmitoyl-
ACP, but ATR-83 had a substantially larger turnover number.
ATR-83’s increase in kcat matches its improvements in fatty
alcohol titer. Taken together with the enzyme expression data,
this suggests that the engineered enzymes are increasing alcohol
production by an enhanced catalytic rate.

We also analyzed the enzymes’ activity on CoA substrates and
found that ATR-83 has a lower activity than the parents on
palmitoyl-CoA (Supplementary Fig. 4). This suggests that ATR-
83 may not be a faster enzyme overall, but instead displays an
altered preference for ACP over CoA. This altered preference

could be the result of changes in the protein surface that interacts
with the ACP substrate.

Statistical analysis of the enzyme landscape reveals features
that influence fatty alcohol production. Over the course of our
UCB sequence optimization, we collected 96 data points mapping
chimeric sequences to fatty alcohol titers. This sequence-function
data can serve as a rich resource for understanding how protein
sequence and structure impact in vivo enzyme activity. We
trained a GP regression model to predict fatty alcohol titers from
sequence. This model displayed excellent predictive ability in a
cross-validation test (Supplementary Fig. 5).

We used this predictive model to assess how each chimera
sequence block contributes to overall enzyme activity (Fig. 4a).
We see that most block positions influence activity and display a
broad range of effects. The three sequence blocks with the largest
positive contribution were block 7 from MA-ACR, block 3 from
MB-ACR, and block 2 from MT-ACR. Substitution to any one of
these blocks tends to increase alcohol titers by over 70%. Block 8
from MB-ACR also strongly tends to increase the titers. The
sequence blocks with the most negative contribution were blocks
3 and 7 from MT-ACR. Overall, most blocks from MT-ACR were
deleterious for alcohol production.

We mapped the block effects onto MA-ACR’s homology model
to relate their contributions to structure and mechanism (Fig. 4b).
Block 2 likely forms extensive interactions with the enzyme’s
NADPH cofactor, and MT-ACR is the best parent at this
position. While there are many amino acid differences in this
block, it’s notable that MT-ACR has a different NADPH binding
motif than the other two parents (GGSSGIG vs GATSGIG). MT-
ACR’s motif may provide more efficient NADPH utilization
in vivo. Blocks 4–8 make up the binding pocket for the acyl-
thioesters. Block 5 contains three of the catalytic residues (a Y, S
and K), and block 6, whose sequence is highly conserved, appears
to be involved in NADPH binding. Blocks 7 and 8 appear to
contain surface residues; positively charged residues in these
blocks are likely involved in docking the negatively charged acyl-
ACP29.

We hypothesized the net charge of the enzymes’ substrate
binding pocket may influence activity because the ACP
substrate contains many negatively charged residues. To examine
the enzymes’ charge distribution near the substrate binding site,
we computationally docked ACP (from PDB entry 6DFL) to our
homology model of MA-ACR using RosettaDock30. We then
identified all interface positions within a 10 Å radius of the
docked ACP and calculated the net charge of each chimera’s
interface residues. We found the net charge of an enzyme’s
substrate binding interface was positively correlated with the total
fatty alcohol titer (Fig. 4c). A chimera’s substrate interface charge
is dictated by nine sequence positions that are near the ACP
substrate and that contain charged residues in at least one parent
(Fig. 4d, e). The charges at these sequence positions can largely
explain the preferred blocks from Fig. 4a.

Discussion
Engineering fatty acyl reductases (FARs) to have improved
activity on acyl-ACP substrates could open routes to in vivo
production of fatty alcohols, and other valuable bioproducts such
as waxes and alkanes. In this work, we engineered enzymes with
improved activity on acyl-ACP substrates. Our approach lever-
aged gene shuffling to broadly sample sequence space and ML-
driven protein engineering to rapidly and efficiently identify
optimized sequences. Our top identified enzyme, ATR-83, dis-
played twofold higher in vivo fatty alcohol titer than the best
natural sequence, MB-ACR, and nearly fivefold higher titers than
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MA-ACR. These increases in fatty alcohol titer are a result of
ATR-83’s enhanced turnover number on ACP substrates. The
chimeric enzymes discovered in this work have potential to
improve the efficiency of alcohol production from acyl-ACPs
in vivo.

Shuffling the AHR and ATR domains between the three nat-
ural sequences generated chimeric enzymes that produce a broad
range of fatty alcohol titers. From these results, it appears the
ATR domain from MB-ACR has the highest activity on ACP
substrates and the AHR domain from MA-ACR has the highest
activity on the intermediate aldehyde substrate. Rather than
directly affecting the catalytic rate, it’s also possible that these
domains could be enhancing activity through inter-domain
interactions, especially since MA-ACR has been shown to be
tetrameric4.

Machine learning is rapidly advancing the fields of directed
evolution and protein engineering15–17,31. Though some ML-
based strategies (especially those involving deep learning or
neural nets) require massive amounts of training data, active-
learning approaches (such as UCB optimization) can be used to
simultaneously explore the sequence-function landscape and
identify improved sequences from relatively few data points. The
reduced need for data enables protein engineering workflows that
do not depend on high-throughput techniques, and thus over-
comes major limitations of directed evolution approaches. Our
design-test-learn cycle closely resembles the UCB optimization
process previously used to engineer thermostable chimeric cyto-
chrome P450s14. However, a key difference in this work was the
introduction of an active/inactive binary classifier to filter out
potential inactive sequences that provide little information
regarding enzyme activity. Incorporating this classifier led to
improved predictions by the GP regression model, especially in
early UCB rounds when the number of active sequences was
small (only 12 sequences were active from the first three rounds).

In the early rounds of our UCB sequence optimization, we
found it was helpful to restrict the number of block exchanges
from the parent sequences in order to bias the search towards
functional sequences. Sampling further away almost always
resulted in non-functional sequences that provided little infor-
mation about the fatty alcohol production landscape. We learned
this trick during the course of the sequence optimization, which
certainly limited the efficiency of our method. Future improve-
ments to UCB algorithm could include an informative prior for
the active/inactive binary classifier that encodes a preference to
sample near the parent sequences when limited functional data is
available.

In principle, our protein engineering framework is applicable
whenever an underlying fitness landscape can be inferred via
machine learning. There have been multiple previous studies
demonstrating the effectiveness of machine learning to navigate the
sequence-function landscape. A notable example used a similar
UCB method to optimize cytochrome P450 thermostability14. A
lower confidence bound (LCB) algorithm was used to predict
chimeric channelrhodopsin sequences that localize to the plasma
membrane of mammalian cells, and UCB optimization was then
used to identify chimeras with high localization18. GP classification
and regression models were further used to engineer highly light
sensitive channelrhodopsins for optogenetics31. Iterative searches
through protein sequence-function landscapes such as UCB opti-
mization and LCB minimization reduce dependency on large
datasets, and enable engineering of more difficult protein targets.

ATR-83 produced 50% more fatty alcohols than parent B (A-
BBBBBBBB) and 4.9-fold more than MA-ACR. It is difficult to
interpret these in vivo results because intracellular acyl-ACP
pools exist as a broad mixture from C4-C18, and each enzyme
may have its own substrate preferences. We performed further
kinetic characterization on the enzymes and found ATR-83’s
increased in vivo alcohol production is the result of enhanced
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turnover number (kcat) on ACP substrates, rather than enzyme
expression or KM effects. Interestingly, ATR-83 displays lower
activity on acyl-CoA substrates than parent B and MA-ACR.
Since both acyl-ACP and acyl-CoA substrates have the same
thioester bond that is being reduced, one might expect substrate
specificity to manifest as differences in Km between the enzymes.
However, we observed enzymes’ kcat to be the major determinant
of substrate specificity. One possible explanation for the observed
behavior could be that ACP is interacting with the enzyme sur-
face to allosterically enhance the catalytic rate. Similar allosteric
modulation by ACPs has been observed in the LovD enzyme32.

We found a positive correlation between an enzyme’s net
charge near the putative substrate binding site and its activity on
acyl-ACPs in vivo. This relationship may be expected because
positive charges on the enzyme surface could enhance electro-
static interactions with the negatively charged ACP substrate. The
chimeric enzymes’ substrate interface charges are largely dictated
by blocks 4, 7, and 8. Sequences with B at block 4, A at block 7,
and B at block 8 (i.e., XXXBXXAB) can increase the net interface
charge of a chimera by up to +4. The average alcohol titer of
chimeras containing these three blocks is 42 mg/L, compared to
an average of 8 mg/L for sequences without that combination.
These results suggest future enzyme engineering directions to
supercharge the substrate interface with positively charged resi-
dues to further enhance electrostatic interactions with ACP. A
similar approach has been applied to acyl-ACP thioesterases,
leading to improved enzyme activity29.

While we demonstrated that our engineered enzymes have
improved activity on palmitoyl-ACP both in vivo and in vitro, the
activity of the enzymes on shorter and medium chain substrates is
less clear. Production of medium chain fatty alcohols, such as
octanol, remains a prime target for metabolic engineering, since

medium chain fatty alcohols are more valuable than long chain
fatty alcohols33. In order to explore the in vivo activity of these
engineered enzymes on shorter chain acyl-ACPs, new methods
would be needed to alter the acyl-ACP distribution in the cells
without significantly disrupting pathways involving production of
lipids for the cell membranes. Alternatively, pathways that utilize
acyl-CoA pools show promise for making medium length alco-
hols selectively7,9. While our active-learning strategy focused on
acyl-ACP activity, it could also be used to enhance activity on
medium chain acyl-CoAs.

While our engineered ATRs were able to significantly boost
fatty alcohol production from acyl-ACP substrates, the titers we
achieved are still far below those from pathways that rely on acyl-
CoA intermediates, such as the implementation of reverse beta
oxidation in Mehrer et al. (1.8 g/L)8 and the utilization of a
thioesterase/acyl-coA ligase pair in Hernández-Lozada et al.
(1.3 g/L)9. Our lower titers are expected since the acyl-ACP pool
is considerably smaller than the acyl-CoA pools that can be
achieved in these and similar pathways. In addition, these pre-
vious works involved extensive strain optimization to boost acyl-
CoA pools, while our current enzyme engineering results were
achieved in an unmodified host strain. Importantly, the acyl-ACP
route to produce fatty alcohols is more direct and has a lower
energetic cost than pathways utilizing acyl-CoA intermediates.
Future work could focus on strain engineering efforts to upre-
gulate fatty acid biosynthesis by modifying FadR expression or by
relieving the pathway’s feedback inhibition by longer chain acyl-
ACPs.

Our ability to engineer microbes to produce high-value che-
micals is often limited by the availability of enzymes to catalyze
key chemical reactions. We have presented an enzyme engi-
neering framework that leverages ML-based sequence-function
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models with iterative experimentation to rapidly identify
improved enzymes. This approach can be generally applied to
enzymes that lack a high-throughput functional assay or struc-
tural information, and therefore are challenging to engineer using
traditional directed evolution and rational methods. Future
advances in enzyme engineering will open routes to produce
valuable chemicals from low-cost and renewable feedstocks.

Methods
Chemicals, reagents, and media. E. coli RL08ara21 and CM248 assay media used
for this study are the same composition as Miller LB, except with 10 g/L peptone
instead of 10 g/L tryptone. CM24 media was supplemented with 1% w/v glucose,
and sterile filtered using a 2 µM filter. E. coli RL08ara assay medium was sterilized
by autoclaving. Both media were adjusted to a pH of 7.0 prior to sterilization.

Individual fatty alcohol standards were prepared at a concentration of 100mg/mL
by dissolving alcohols ranging from C3 to C17 in 200 proof ethanol. Then, alcohols
were mixed to make 10mg/mL standards of even-chain alcohols (C4, C6, C8, C10, C12,
C14, and C16) and odd-chain alcohols (C3, C5, C7, C9, C11, C13, C15, C17). All
unique biological materials are available upon request.

Measuring in vivo fatty alcohol titers. We measured in vivo alcohol titers pro-
duced by each enzyme variant using gas chromatography (GC). Overnight cultures
started in LB+Kanamycin from individual colonies from the transformation were
grown for 16–20 h and diluted into a 50 mL culture of E. coli RL08ara Assay
Medium+ Kanamycin in a 250 mL baffled shake flask such that the final OD was
about 0.01. The media had a 20% (10 mL) dodecane overlay, and we supplemented
the media with 1 mL of 50% v/v glycerol. The cultures grew at 37 °C for 45 min at
250 rpm, and then we induced protein expression by adding 500 µL of 100 mM
IPTG (final concentration 100 µM IPTG). As a control, each batch also included
blank cultures that were prepared by mixing media, dodecane, glycerol and anti-
biotic in the same amounts as the expression cultures, but without any cells added.
The expression cultures incubated for 18 h at 30 °C after induction.

Afterwards, we cooled the expression cultures on ice to prevent evaporation.
Then, we added 150 µL of 10 mg/mL odd-chain internal standard mixture to each
culture flask and mixed them vigorously to make an emulsion. Immediately after
mixing, we transferred 5 mL of the emulsion to a glass centrifuge tube pre-loaded
with 1 mL of n-hexanes. We vortexed the tubes for 20 s, shook for 20 s, and
vortexed for another 20 s. Then, we centrifuged the samples for about 10 min until
the organic layer and aqueous layers separated and extracted about 900 µL of the
organic layer to load into a GC vial for analysis on GC-FID.

We analyzed all GC samples using a Shimadzu Model 2010 GC-FID system
with an AOC-20i autosampler and a 60 m 0.53 mm ID Stabilwax column (Restek
10658). The oven temperature program used to analyze samples from RL08ara and
CM24 samples was based on Mehrer et al.8 and is as follows: 45 ˚C hold for 10 min,
ramp to 250 ˚C at 12 ˚C/minute, hold at 250 ˚C for 10 min. In some individual
experiments we shortened the hold time. Each run included standards of the odd-
chain internal standard mixture and even-chain standard mixture to control for
any changes in the retention times of the analytes. We estimated the concentrations
of even-chain fatty alcohols by averaging the areas (Ai− 1 and Ai+ 1) and
concentrations (Ci− 1 and Ci+ 1) of the odd-chain internal standards that bracketed
the particular even-chain analyte. We used the resulting response factor to convert
the area of the even-chain species (Ai) to the original media concentration (Ci) per
the following equation:

Ci ¼ Ai �
avg Ci�1;Ciþ1

� �

avg Ai�1;Aiþ1

� � i ¼ 2; 4; 6; 8; 10; 12; 14; 16ð Þ ð1Þ

Aerobic alcohol production in BL21(DE3). We cloned the initial seed sample
ACR chimeras into the pET28 backbone and transformed into BL21(DE3). Cul-
tures were started in LB + Kanamycin from individual colonies from the trans-
formation and grown overnight for 16–20 h. We diluted the cultures 100-fold into
5 mL cultures of LB + Kanamycin in culture tubes. We grew the cultures for
2.5–3 h, measured the ODs, and then induced with 5 µL of 100 mM IPTG and
incubated for 24 h at 20 °C with shaking at 250 rpm.

Following protein expression, we incubated the cultures on ice for 1.5–2.5 h.
Nonanol (C9) and heptadecanol (C17) were used as internal standards; a solution
that was 5 µM nonanol and 5 µM heptadecanol in hexanes was prepared and added
(1 mL) to each 5 mL expression culture. We then vortexed and spun down the
sample in a centrifuge (1000x G for 10 min) to separate the phases. In total, 900 µL
of the organic layer was extracted for analysis on GC-FID. Titers of fatty alcohols
were determined using an external standard curve with standards of each of the
even chain fatty alcohols in hexanes and dividing by the extraction ratio (5) to
convert from the concentration in the organic phase to the original concentration
in the media.

Anaerobic alcohol production in CM24. ACR chimeras were cloned into the
pBTRCK plasmid backbone and transformed into CM24 along with seFadBA

(g130, pACYC-seFadBA) and tdTER (g131, pTRC99A-tdTER-fdh)8. We started
overnight cultures from individual colonies in LB + Kanamycin + Carbenicillin
+ Chloramphenicol. The following day, after 16–20 h, 600 µL of overnight cultures
were diluted in 30 mL of CM24 Assay Medium + Kanamycin + Carbenicillin
+ Chloramphenicol with a 20% (6 mL) dodecane overlay in a 50 mL serum vial,
which was sealed. We grew the cultures for 2 h at 30 °C, and then induced by
injecting 300 µL of 100 mM IPTG (for a final IPTG concentration of ~100 µM)
through the septum with a needle. Cultures were then incubated at 30 ˚C for 48 h.

Following expression, we cooled the cultures on ice and added 180 µL of an
internal standard mixture (the same fatty alcohol mixture used for quantitation of
alcohols in RL08ara). We mixed the samples thoroughly and extracted 5 mL of the
emulsion with 1 mL of hexane per the same protocol as RL08ara above.

Structural modeling and SCHEMA library design. We utilized the MODELLER34

homology modeling software to build 100 models of each of the acyl-thioester
reductase domains of MA-ACR, MB-ACR, and MT-ACR using the following PDB
entries as templates: 3M1A-A, 3RKR-A, 3RIH-A, 3AFM-B, 3AFN-B, and 4BMV-A.
We built a contact map by determining which pairwise amino acid contacts (defined
as two amino acids within a 4.5 Å radius based on any atoms in the amino acids)
were present in each model, and weighted each contact by the percentage of models
in which the contact was present.

We determined the crossover between the aldehyde-reductase domain and the
acyl-thioester reductase (ATR) domain by aligning the sequences of MA-ACR,
MB-ACR, and MT-ACR and selecting a crossover point at the conserved LDPDL,
~350–360 residues from the N-termini. Then, we used SCHEMA-RASPP to
determine 7 additional crossover locations within the ATR domain that were
compatible with Golden Gate assembly.

Gene assembly and strain construction. All ATR enzymes tested were cloned
into the pBTRCK plasmid backbone and transformed into E. coli RL08ara21. We
obtained the three natural parent sequences from prior studies8,9. We amplified the
AHR and ATR domains of each of the natural sequences, as well as the plasmid
backbone, by PCR using primers (Supplementary Table 7) that contained Golden
Gate overhangs. We used Phusion Hot Start Flex 2X Master-Mix (NEB) for all PCR
reactions. Then, we used Golden Gate assembly to combine the pieces and syn-
thesize the domain shuffled variants. Golden Gate reactions were carried out either
using commercial Golden Gate assembly mix (NEB), or an in-house mixture of the
components from NEB (T4 DNA ligase buffer, BsaI HF v2 and T4 DNA ligase).

We designed plasmids containing each of the 24 blocks determined by RASPP
such that each block was flanked by BsaI restriction sites. The plasmids were
synthesized by TWIST Biosciences. The blocks (including the BsaI site) were
amplified by PCR and cloned into a backbone vector harboring the AHR domain of
MA-ACR by Golden Gate assembly. For sequences that we studied in vitro, we
amplified the whole FAR sequence and used Golden Gate assembly to add the
insert into a pET 28 backbone.

Greedy algorithm to design an informative seed sample. We sought to identify
the set of 20 chimera sequences that is maximally informative of the full chimera
landscape. We quantify “informativeness” as the Gaussian mutual information
I(S;L) between the chosen sequences S and the full landscape L. This mutual
information simplifies to the Gaussian entropy H(S) because S is a subset of L.
Entropy is a submodular set function and can therefore be efficiently optimized
using a greedy algorithm.

We started with our three parent sequences and scanned over all possible
chimera sequences si to determine which resulted in the largest Gaussian entropy
H(S ∪ {si}). This top sequence was added to the chosen set of sequences S and the
greedy sequence selection process was repeated until 20 sequences were chosen.

Sequence-function machine learning. We modeled the sequence-function land-
scape using a combination of a Gaussian Naïve Bayes (GNB) classifier to distin-
guish inactive versus active sequences and Gaussian process (GP) regression to
model a sequence’s fatty alcohol titer.

The active/inactive classifier was trained on chimera sequence-function data
using scikit-learn’s Naïve Bayes classifier. We categorized sequences as active if
their alcohol titer was above a certain threshold; otherwise, they were considered
inactive. The amino acid sequences for each tested chimera were one-hot encoded
and used as inputs for the classifier. The resulting model provides a prediction of
the probability that a sequence is an active enzyme.

We also trained a GP regression model on the active sequences’ fatty alcohol
titers. Our GP regression model used a homogeneous linear kernel to define the
covariance between pairs of sequences

ki;j ¼ σ2xi � xj ð2Þ
where σ2 is a tunable variance hyperparameter, and xi and xj are the encodings for
sequences i and j, respectively. The Hamming kernel one-hot encoded each amino
acid option at each sequence position, while our structure kernel one-hot encoded
amino acid combinations at each residue-residue pair that was contacting in the
three-dimensional structure. We calculated the GP’s posterior mean and variance
following Algorithm 2.1 in Rasmussen & Williams35 (Supplementary Method 1).
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We used leave-one-out cross-validation to scan variance (σ2) hyperparameter
values ranging from 10−6 to 105 and selected values that maximized the correlation
coefficient and minimized the mean squared error (Supplementary Fig. 6). When these
two objectives could not be realized simultaneously, we chose σ2 values that balanced
them. We then used the chosen σ2 value to fit the GP model on all the data and predict
the activities of all untested sequences that the GNB classifier labeled as active.

Upper-confidence bound optimization. We utilized UCB optimization to select
informative sequences to build and test for the next round. For UCB rounds 2–10,
we trained the active/inactive GNB classifier and the alcohol titer GP regression
model on all prior data. We then applied the GNB and GP models to make
functional predictions over all untested chimeras. We chose a panel of sequences to
test using a “batch mode” UCB selection strategy36, while excluding any sequences
that were predicted to be inactive from the GNB classifier. We first chose the
sequence that maximized the GP upper confidence bound (mean + one standard
deviation). This is the UCB optimal sequence. We then retrained the GP model
with the assumption that the UCB optimal sequence’s true titer was equal to its
predicted titer. We then recalculated the UCBs and chose the new UCB optimal
sequence. This process enables selection of multiple UCB optimal sequences per
round, and it was repeated until 10–12 sequences were chosen per batch. The
details of each round of UCB optimization can be found in Supplementary Table 4.

The first UCB round was performed slightly differently than the others because we
were still refining our method. For the first UCB round, we trained GP regression
models on alcohol titers from both BL21(DE3) and CM24 strains. We chose sequences
that maximized the sum of the BL21(DE3) and CM24 UCB scores and selected a panel
of ten chimeras using the batch mode UCB approach described above.

Measuring in vivo enzyme expression levels using SDS-PAGE. To verify that
increases in fatty alcohol titers were due to enzyme activity, we performed addi-
tional characterization of the protein expression levels for the parents and selected
chimeras. To estimate the expression level of the ATR enzyme, we performed
additional replicates using the same expression conditions as were used during
UCB optimization. Then, after extracting the fatty alcohols, we suspended the
remaining 5 mL pellet in 1 mL of media. We normalized the ODs of the suspen-
sions to an OD of 10 and pelleted and froze 500 µL of the OD 10 culture. We later
thawed the frozen pellets and lysed them using 250 µL lysis buffer (3872 µL
100 mM Tris pH 7.4, 120 µL Bugbuster, 4 µL lysozyme and 4 µL DNAse I).

We prepared a standard curve using dilutions of purified MA-ACR. We added
3 µL of each MA-ACR dilution to 12 µL of SDS master mix (which consisted of 5
parts 2X SDS mix and 1 part 1 M DTT) and mixed them in a 1:1 ratio
(volume:volume) with empty vector lysate. The other lysates were mixed with 2X
SDS buffer and 3 µL 100 mM Tris pH 7.4 (to ensure equal volumes of lysate
between the standards and the samples). We heat denatured the lysates (at 85 °C
for 2–5 min) and analyzed them by SDS-PAGE.

We used FIJI, an image analysis software37, to estimate the intensities of the
ATR band in the MA-ACR standards and generate a standard curve
(Supplementary Fig. 3). We made new standard curves for each replicate to reduce
gel to gel variability, and only compared samples to standards on the same page gel.
Expression levels are reported as µg/mL of ATR (at an OD of 20).

Biosynthesis of fatty acyl-ACP substrates. We synthesized the acyl-ACP sub-
strates by functionalizing purified E. coli ACP with a 4ʹ-phosphopantetheine arm
by the acyl-ACP synthetase from Vibrio harveyi38, and then attaching the acyl-
chain to the thiol end of the arm using a phosphopantetheinyl transferase (SfP)
from Bacillus subtilis.

Expression of V. harveyi AasS, B. subtilis SfP and E. coli ACP. The enzymes
needed to functionalize palmitoyl-ACP were expressed using the method in
Hernández-Lozada et al. with some minor modifications39. The cells were grown
for 2 h at 37 ˚C (200 rpm) and then induced with 1 mM IPTG (final concentration)
without cooling the cultures as was done in Hernández-Lozada et al. AasS and SfP
were expressed overnight at 18 ˚C for 18–24 h, and ACP was expressed at 20 ˚C
overnight (18–24 h) and harvested by centrifugation. We also purified the proteins
using the method from Hernández-Lozada et al., however rather than using dia-
lysis, we used Amicon filter columns to carry out buffer exchange. The final
concentrations of the proteins were determined using Bradford assays.

Functionalization of E. coli ACP. To cleave the His-tag from the apo-ACP, we
added 700 uL of 2.1 mg/mL TEV protease to the 4 mL ACP solution. The reaction
incubated overnight (16–20 h) at 20 ˚C shaking at a speed of 250 rpm. At the
conclusion of the digestion, we stored the mixture in 50% glycerol at −80 ˚C. Later,
to purify the cleaved apo-ACP, we thawed the digestion and ran it over parallel
gravity columns packed with Nickel Sepharose Fast Flow resin. We pooled the
flow-through and buffer exchanged with 50 mM Na2HPO4 pH 8 + 10% glycerol
using an Amicon filter unit (MWCO 3000 kDa). The concentration of the cleaved
apo-ACP was determined by a Bradford assay.

The conditions for the reactions to generate holo-ACP were: 500 µM apo-ACP,
5 µM SfP, 5 mM Coenzyme A, and 10 mM MgCl2 in 100 mM Na2HPO4 pH 8. The

reactions took place in 500 uL aliquots in 1.5 mL Eppendorf tubes and shaken in a
beaker at 37 ˚C for 1 h.

We dissolved sodium palmitate in water heated to 65 ˚C to a concentration of
100 mM. After the holo-ACP reactions were finished, we added palmitate, ATP,
and AasS to the reaction mixture, (along with enough buffer to double the reaction
volume), to give final concentrations of 5 mM palmitate, 5 µM AasS and 10 mM
ATP. The reactions incubated overnight (16–20 h) at 37 ˚C. Then, we pooled the
reactions, purified the palmitoyl-ACP by running the mixture through a gravity
column packed with Nickel Sepharose Fast Flow Resin. We buffer exchanged the
purified palmitoyl-ACP into 100 mM Na2HPO4 + 10% glycerol pH 8.

Purification of ATRs. We expressed parental ATRs (A-AAAAAAAA, A-BBBB
BBBB, and A-TTTTTTTT) and purified them per the same method as E. coli ACP,
except for the buffer exchange step. We buffer exchanged them into 20 mM Tris,
50 mM NaCl pH 7 using an Amicon filter unit (30,000 kDa MWCO). Then, we
added glycerol to the proteins (about 15 % v/v for parents 1-3). We expressed ATR-
83 at 30 ˚C rather than 20 ˚C but purified it in the same manner, though we added
more glycerol to the purified ATR-83 (final concentration ~50 % v/v glycerol). We
determined the concentration of the enzymes by Bradford assays.

In vitro enzyme kinetics on palmitoyl-ACP and palmitoyl-CoA. We determined
the activity of the above ATRs in a 96 well plate based assay using 5′5 Dithiobis(2-
nitrobenzoic acid) or DTNB to monitor the progress of the conversion of
palmitoyl-ACP to hexadecanol and free holo-ACP (measuring the absorbance at a
wavelength of 412 nm). We tested palmitoyl-ACP concentrations up to 40 µM (as
this concentration should be within the physiological range within cells)40. Reac-
tions contained 1 µM of the respective ATR and 200 µM NADPH in 20 mM Tris +
50 mM NaCl pH 7 and the total reaction volume was 100 µL. The concentration of
DTNB was 250–252 µM (the difference is due to slightly different preparations of a
NADPH/DTNB master mixes on different dates).

To gauge activity of the ATRs on CoAs in vitro, we carried out reactions using
palmitoyl-CoA as a substrate. The in vitro assay used to determine CoA activity
was identical to that used for ACP activity above.

Computational docking and analysis of interfacial charge. We used the
RosettaDock30,41 application to perform local docking simulations to dock a
structure of palmitoyl-ACP (from PDB entry 6DFL) to MA-ACR. We did not
include the acyl-chain in the docking simulations. We ran 1000 docking simula-
tions and selected a model based on minimizing the total energy and the interface
score. Then, using PyMOL, we determined which residues in the model of MA-
ACR were within a 10 Å radius of the ACP molecule. The number of charged
residues within that radius was then determined, and the net interface charge was
defined as the number of positive residues minus the number of negative residues.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this work are available within the paper and its
Supplementary Information files. A reporting summary for this article is available as a
Supplementary Information file. Structural data for the following PDB IDs from the
protein databank were utilized: 6DFL, 3M1A, 3RKR, 3RIH, 3AFM, 3AFN, 4BMV for
structural models. In addition, all enzyme sequence-function data collected in this work
is available at the ProtaBank protein engineering database under ID nu9KXbjT4. Source
data are provided with this paper.

Code availability
All code for machine learning, UCB protein sequence optimization, and data analysis is
available at the GitHub repository: https://github.com/RomeroLab/ML-Guided-Acyl-
ACP-Reductase-Engineering (archived version: https://doi.org/10.5281/zenodo.5259326).
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